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Abstract—The problem of detecting sensor and actuator faults for a class of multivariable
systems with arbitrary relative degree is considered. The proposed solution is based on the
synthesis of unknown input observers. A modification is proposed that ensures a predefined
convergence time, which is based on the dynamic regressor extension and mixing method and
the Kreisselmeier scheme. The obtained solution is extended to the class of nonlinear systems
with parametric uncertainties. Simulation results are provided to illustrate the effectiveness of
the proposed approach.
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1. INTRODUCTION

The article addresses the problem of detecting sensor and actuator faults in nonlinear systems
with arbitrary relative degree and parametric uncertainties under conditions of unmeasured input
signal. There are two main approaches to solve the task of technical condition diagnosis: physical
and analytical redundancy.

The first approach involves the integration of redundant sensors and actuators into the system.
Despite its effectiveness, this method can lead to significant financial costs and face technological
limitations. The second approach is based on the development of specialized observers [1]. This
method uses mathematical models and measurable system data to detect faults without the need
for additional equipment, thereby minimizing the limitations associated with physical redundancy.

Observer-based approaches demonstrate high effectiveness in detecting faults both at the inputs
(actuators) and outputs (sensors) of the system [2–4]. The main idea is to analyze the differences
between the measured outputs and their estimates (residuals). The use of structured observer sets,
directional residual generators, or specialized filters helps to solve the problem of fault isolation.
Structured observer sets are developed by designing specific generators. Each of them tuned to be
sensitive only to a particular type of fault. Directed generators produce residual signal vectors in
such a way that they change only in one direction in the residual space corresponding to a specific
fault, allowing for precise fault identification. Special filters, based on observers, are designed
to be sensitive to specific types of failures, increasing diagnostic accuracy. However, a significant
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drawback of these methods is their dependence on inaccuracies in the system’s mathematical model,
which can limit their applicability in cases of parametric and signal uncertainties.

Among observers, there is a special category known as unknown input observers (UIO) [5–8],
which are designed to estimate the state vector when the input signal cannot be measured. This type
of observer is particularly effective in the presence of various disturbances and noises in the control
channel. The main idea of this approach is to create state vector observers that are insensitive to
input signals.

In studies [9–15], numerous examples demonstrate the use of this class of observers for solving
practical tasks such as fault detection, sensor and actuator diagnostics, as well as decentralized
state vector estimation in applications like formation control of unmanned autonomous vehicles.
These applications showcase the effectiveness of unknown input observers in various challenging
operational conditions.

However the synthesis of such observers is possible only for systems where the relative degree (the
difference between the degrees of the denominator and numerator of the transfer function) is equal
to one. For systems with a higher relative degree, strict constraints are introduced. For example,
studies [16, 17] require the measurability of the derivatives of the system’s output signal. In [18, 19],
the authors propose to split the original system dynamics equation to isolate the components of
the state vector that can be observed based solely on the output.

This article presents a method for diagnosing sensor and actuator faults in dynamic multivariable
systems with arbitrary relative degree. The novelty of the obtained results lies in the following:

• A method for detecting sensor and actuator faults in multivariable systems with arbitrary
relative degree and unmeasurable input signal has been developed;

• A modification of the method ensuring predefined finite-time convergence has been proposed;
• The method has been extended to the class of nonlinear systems with parametric uncertainties
and multi-harmonic disturbances.

The solution is based on the previously proposed by the authors method of unknown input ob-
server synthesis [7]. Modifications have been developed to ensure the applicability of this approach
to systems with parametric uncertainties, as well as a predefined finite-time convergence.

The article is structured as follows: Section 2 presents the problem statement; Section 3 is
dedicated to the synthesis of the unknown input observer; Section 4 describes the method for
detecting sensor and actuator faults; Section 5 introduces a modification of the observer that
ensures finite-time convergence; Section 6 discusses the application of the developed method to
nonlinear systems with parametric uncertainties; the results of computer simulations are presented
in Section 7.

2. PROBLEM STATEMENT

Let us consider a multivariable linear time-invariant system
{

ẋ(t) = Ax(t) +B(u(t) + fa(t)),

y(t) = Cx(t) + fs(t),
(1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the input signal vector, y(t) ∈ R
l is the measurable

output signal vector, A,B,C are known constant matrices of appropriate dimensions, fs(t) is the
fault signal affecting the sensor measurements, and fa(t) is the fault signal affecting the system
input. The system has a vector of relative degrees between the inputs and outputs r = [r1, . . . , rl].

The sensor fault signal fs(t) is an unknown vector function that acting on the sensor measure-
ments during their failure. The fault signal fa(t) is affecting the system input and takes an unknown
nonzero value when the actuators fail.
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Let us introduce the following assumptions.

• The pairs of matrices A,B and A,C are controllable and observable, respectively.

• The matrices B and C have full column and row ranks, respectively [2].

It is necessary to develop a method that ensures the detection and isolation of sensor and
actuator faults in the system (1). The solution is defined as a binary function of the following form:

J i
fault(t) =

{

1, if fault occurs,

0 else,

where i is the index of the diagnosed actuator or sensor. To solve the problem, we will use
state vector observers that are insensitive to the input signal. Additionally, we will extend the
obtained results to the class of nonlinear systems with parametric uncertainties and multi-harmonic
disturbances.

3. UNKNOWN INPUT OBSERVER SYNTHESIS

In this section, we present an algorithm for synthesis of an unknown input observer under the
condition of no faults. Let us represent the matrices B and C as follows:

B = [B1 B2 . . . Bm], C = [CT
1 CT

2 . . . CT
l ]

T,

where Bi and Ci are the columns and rows of the corresponding matrices. Introduce into consid-
eration

P = [C1A
r1 C2A

r2 . . . ClA
rl ]T,

N =













C1A
r1−1B1 C1A

r1−1B2 . . . C1A
r1−1Bm

C2A
r2−1B1 C2A

r2−1B2 . . . C2A
r2−1Bm

...
...

. . .
...

ClA
rl−1B1 ClA

rl−1B2 . . . ClA
rl−1Bm













.

Consider unknown input observer

˙̂x(t) = Mx̂(t) + L(y(t)− Cx̂(t)) +Gy(r)(t), (2)

where y(r)(t) = [y
(r1)
1 y

(r2)
2 . . . y

(rl)
l ], y

(j)
i is the jth derivative of the ith output of the system (1),

and the matrices M , L, and G are the solutions of the system of equations.











B −GN = 0,
M = A−GP,
F = M − LC,

(3)

where G = B(NTN)−1NT. To clarify the procedure for selecting the matrix G, let us consider a
simple academic example.

A =

[

0 1
−1 −2

]

, B =

[

0
1

]

, CT =

[

1
0

]

.

Then the matrix N = 1 and GT = [0 1].
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Let us consider the observation error x̃(t) = x(t)−x̂(t). Differentiating it, taking into account (3),
we obtain the dynamic model:

˙̃x(t) = Ax(t) +Bu(t)−Mx̂(t)− L(y(t)− Cx̂(t))−Gy(r)

= Ax(t) +Bu(t)−Mx̂(t) + LCx̂(t)−GPx(t)−GNu(t)− Ly(t)

= (A−GP )x(t)−Mx̂(t)− LCx̃(t)

= (M − LC)x̃(t) = Fx̃(t).

(4)

The matrix F defines the dynamics of the closed-loop system and is chosen by the developer,
while L is calculated to ensure the required eigenvalues of the matrix F . It is obvious that if F
is Hurwitz, the observation error converges to zero. This condition can be satisfied if the matrix
pair (M,C) is observable, i.e., there exists a matrix L such that M − LC is stable.

Let us define the necessary and sufficient conditions for the existence of a solution of the system
of equations (3).

Theorem 1. Let the control plant is described by the system of equations (1), and the observer (2)
satisfies the following conditions:

• rank(N) = rank(B);

• the matrix pair (M,C) is observable.

Then the system of equations (3) has a unique solution

G = B(NTN)−1NT.

Proof. The system of equations (3) has a solution if and only if GN = B. Let us rewrite it as
follows:

NTGT = BT.

The matrix BT belongs to the spectral space of NT. Therefore,

rank(BT) 6 rank(NT) ⇒ rank(B) 6 rank(N).

On the other hand [20],

rank(N) = rank(PB) 6 min{rank(P ), rank(B)} 6 rank(B).

Therefore, a solution to the system of equations (3) exists if and only if rank(N) = rank(B).
The solution for G is obtained as follows:

GN = B ⇒ GNNT = BNT ⇒ G = B(NTN)−1NT.

Thus, the observer dynamics depend on the matrix F , defined in the last equation of system (3).
It is easy to see that to ensure the stability of the matrix F , the matrix pair (M,C) must be
observable. The theorem is proven.

The state vector observer (2) requires the measurability of unavailable derivatives of the output
signal. Without loss of generality, let us assume that r1 6 r2 6 . . . 6 rl. To allow the construction
of an observer for a system with relative degrees ri = 1, i = 1, l, we introduce rl auxiliary variables
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as follows:

z1(t) = x̂(t)−Gy(r−1)(t),

ż1(t) = F (z1(t) +Gy(r−1)(t)) + Ly(t),

z2(t) = z1(t)− FGy(r−2)(t),

ż2(t) = F (z2(t) + FGy(r−2)(t)) + Ly(t),

z3(t) = z2(t)− F 2Gy(r−3)(t), . . .

żr1(t) = Fzr1(t) + F r1G











y1(t)
0
. . .
0











+ F r1G











0

y
(r2−r1)
2

. . .

y
(rl−r2)
l











+ Ly(t),

. . .

żrl(t) = Fzrl(t) + F r1G











y1(t)
0
. . .
0











+ F r2G











0
y2(t)
. . .
0











+ . . .+ F rlG











0
0
. . .
yl(t)











+ Ly(t).

Using the auxiliary variables, the state vector estimate can be obtained as follows:










































































x̂(t) = z1(t) +Gy(r−1)(t)

= zrl(t) + F rl−1G











0
0
. . .
yl(t)











+ . . .+ F r1G











0

y
(r2−r1−1)
2 (t)

. . .

y
(rl−r1−1)
l (t)











+G













y
(r1−1)
1 (t)

y
(r2−1)
2 (t)
. . .

y
(rl−1)
l (t)













,

żrl(t) = Fzrl(t) + F r1G











y1(t)
0
. . .
0











+ F r2G











0
y2(t)
. . .
0











+ . . .+ F rlG











0
0
. . .
yl(t)











+ Ly(t).

(5)

For brevity, let us rewrite (5) as follows:
{

x̂(t) = W1(zrl(t), y
(rl−1)(t)),

żrl = W2(zrl(t), y(t)).
(6)

The state vector observer (5) can be constructed for the estimation of the state vector in systems
with relative degrees equal one. However, it can be used to solve the problem of fault detection in
systems with arbitrary relative degrees by applying filters. This approach is presented in the next
section.

4. FAULT DETECTION AND ISOLATION METHOD

Despite the limitations for synthesizing the observer (5), it can be effectively used for diagnosing
systems with arbitrary relative degrees, particularly for detecting sensor and actuator faults.

4.1. Fault Detection

To solve the fault detection problem, we evaluate the difference between the measured output
and its estimate obtained using the observer

J(t) = y(t)− Cx̂(t). (7)

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 11 2024



1084 MARGUN et al.

To eliminate the unmeasurable derivatives of the output signal, we apply a linear filter λrl−1

(s+λ)rl−1

to (7), where s = d/dt, and λ is a positive constant:

Jf (t) =
λrl−1

(s+ λ)rl−1
[J(t)] =

λrl−1

(s+ λ)rl−1
[y(t)]− C

λrl−1

(s + λ)rl−1
[W1(zrl(t), y

(rl−1)(t))], (8)

where

λrl−1

(s+ λ)rl−1
[W1(zrl(t), y

(rl−1)(t))] =
λrl−1

(s+ λ)rl−1
zrl(t) + F rl−1G















0
0
. . .

λrl−1

(s + λ)rl−1
yl(t)















+ . . .

+F r1G



















0

λrl−1s(r2−r1−1)

(s+ λ)rl−1
y2(t)

. . .

λrl−1s(rl−r1−1)

(s+ λ)rl−1
yl(t)



















+G



























λrl−1s(r1−1)

(s + λ)rl−1
y1(t)

λrl−1s(r2−1)

(s + λ)rl−1
y2(t)

. . .

λrl−1s(rl−1)

(s+ λ)rl−1
yl(t)



























.

All signals in equation (8) are available for measurement. For example, instead of the unmeasur-

able derivative y
(rl−1)
l (t) in (7), the filtered output (λs)rl−1

(s+λ)rl−1 yl(t) is used in equation (8). If the fault

signal is not a high-frequency oscillation, then for ||J(t)|| 6= 0 we have ||Jf (t)|| 6= 0. The required
sensitivity to the fault signal frequencies is ensured by choosing the coefficient λ. We formulate the
fault detection rule as the following expression:

Jfault(t) =

{

1, ||Jf (t)|| > σ,
0, ||Jf (t)|| 6 σ,

where Jfault(t) is the fault indicator, and σ > 0 is the threshold value, either specified by the
developer or adaptively adjusted during system operation to ensure robustness against measurement
noise.

4.2. Sensor Fault Isolation

To isolate sensor faults, we represent the plant (1) in the form [2]:















ẋ(t) = Ax(t) +B(u(t) + fa(t)),

yj(t) = Cjx(t) + f j
s (t),

yj(t) = cjx(t) + fsj(t),

(9)

where cj ∈ R
1×n is the jth row of the matrix C, the matrix Cj ∈ R

(l−1)×n is obtained by removing
the jth row from the matrix C, and yj(t) is the vector y(t) without the jth element. To diagnose
the jth sensor, we construct an observer of the form (6) for the system described by the first two
equations of (9):







x̂j(t) = W1(z
j
rl
(t), yj(t)),

żjrl = W2(z
j
rl
(t), yj(t)),

(10)
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Fig. 1. Sensors fault detection and isolation scheme.

where zjrl(t) is the rlth auxiliary variable for the system (9), and introduce the function

Js,j
f (t) =

λrl−1

(s+ λ)rl−1
yj(t)− Cj λrl−1

(s + λ)rl−1
W1(z

j
rl
(t), yj(t)).

The vector Js,j
f (t) is sensitive to the faults of all sensors except for the jth one. Thus, we can

formulate the following rule for sensor fault isolation:

Js,j
fault(t) =







1, ||Js,j
f (t)|| < σs,j,

0, ||Js,j
f (t)|| > σs,k, k = 1, . . . , j − 1, j + 1, . . . , l,

where σs,j is the threshold value to ensure robustness against noise. The schematic of the sensor
fault detection and isolation is shown in Fig. 1.

4.3. Actuator Fault Isolation

The approach outlined above cannot be applied for detecting actuator faults, as the observer is
insensitive to the input signal. Therefore, we use a different approach to address this problem.

Based on Theorem 1, rewrite the first equation of the system (1), substituting the estimate
of x(t) obtained using (2). Considering (4), we have x(t) = x̂(t) + eFtx̃(0), thus the dynamic
equation takes the form

˙̂x(t) = Ax̂(t) +B(u(t) + fa(t)) + ǫ(t), (11)

where ǫ(t) is an exponentially decaying function which can be neglected.

Apply a stable first-order linear filter to (11) and express the term containing the fault signal:

Ja(t) =
λ

s+ λ
[Bfa(t)] =

λs

s+ λ
[x̂(t)]−

λ

s+ λ
[Ax̂(t) +Bu(t)].

To eliminate the unmeasurable derivatives of the output signal in the observer (6), we also

apply the filter λrl−1

(s+λ)rl−1 and obtain a vector function, based on which we will perform actuator

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 11 2024
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fault isolation:

Ja
f (t) =

sλrl

(s+ λ)rl
W1

(

zrl(t), y
(rl−1)

)

−
λrl

(s+ λ)rl

(

AW1(zrl(t), y
(rl−1)) +Bu(t)

)

. (12)

In accordance with the problem statement, all columns of the matrix B are linearly independent.
Therefore, in the case of a fault in the jth actuator, the vector Ja

f (t) will be aligned with Bj. To
ensure robustness and normalize the fault values of different actuators, we use the cosine of the
angle between the vectors Ja

f (t) and Bj . A larger cosine value corresponds to a smaller angle
between the vectors being considered and, consequently, a higher probability of fault in the jth
actuator. Thus, the fault isolation rule for the jth actuator will take the form

Ja,j
fault(t) =







1,
||JaT

f
Bj ||

||Ja,f || ||Bj ||
< σa,j ,

0,

where Ja,j
fault(t) takes the value of one in the event of a fault in the jth actuator and zero otherwise.

5. FINITE-TIME CONVERGENCE

The convergence time of x̂(t) to the true value depends on the eigenvalues of the matrix F .
In several practical applications predefined finite-time convergence is required. To provide this
capability, we will modify the observer (5).

Considering (4), we can express the state vector in terms of its estimate:

x(t) = x̂(t) + eFtx̃(0). (13)

It is obvious that an initial observation error is required to calculate the accurate value of the
state vector. Let us substitute (6) into (13):

x(t)−W1(zrl(t), y
(rl−1)(t)) = eFtx̃(0),

multiply by the matrix C and apply the linear filter λrl−1

(s+λ)rl−1 to eliminate the unmeasurable output

derivatives:

y − CW1(zrl(t), y
(rl−1)(t)) = CeFtx̃(0).

This equation can be represented in the form of linear regression

q(t) = mT(t)x̃(0), (14)

where

q(t) =
λrl−1

s+ λrl−1

(

y(t)− CW1(zrl(t), y
(rl−1)(t))

)

,

mT(t) =
λrl−1

s+ λrl−1CeFt.

Let us define the initial observation error using (14), dynamic regressor extension and mixing
method, and the Kreisselmeier scheme [21, 22]. Multiply (14) by m(t):

m(t)q(t) = m(t)mT(t)x̃(0)

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 11 2024
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and apply a stable linear filter H(s) =
λf

s+λf
, where λf > 0, to obtain the extended linear regression

Y (t) = Φ(t)x̃(0),

Y (t) = H(s)m(t)q(t),

Φ(t) = H(s)m(t)mT(t).

(15)

State space representation of (15) takes the form

Φ̇(t) = −λfΦ(t) +m(t)mT(t), Φ(0) = 0,

Ẏ (t) = −λfY (t) +m(t)q(t), Y (0) = 0.

The aforementioned Kreisselmeier scheme allows for non-decaying excitation of the regressor for
the time required to estimate the initial observation error.

In accordance with [21], we apply n− 1 different stable linear filters Hi(s) =
λi

s+λi
to (15) and

multiply by the adjoint matrix Φ(t). The transformations performed allow us to obtain n scalar
regression equations

Υi(t) = ∆(t)x̃i(0), i = 1, n,

where ∆(t) = det(Φ(t)), Υi(t) = Adj(Φ(t))Yi(t), x̃i(0) is the ith element of x̃(0).

The estimation of the initial error in the absence of noise can be obtained by a trivial solution.

ˆ̃xi(0) =
Υi(t)

max(∆(t), ε)
, (16)

where ε is a small number to prevent division by zero during the initialization of the algorithm.

The influence of noise can be reduced by selecting an appropriate filter for (15), using low-pass
filters, or moving average filters. We can formulate the following theorem.

Theorem 2. If the matrix F has imaginary eigenvalues, which ensures the condition of non-
decaying excitation of the signal mT(t), then the equations (13) and (14)–(16) provide an estimate
of x̃(0) in a finite time.

The proof of the theorem follows from the results presented in [22] and the calculations provided
above. The convergence time is specified by the developer by choosing the time moment for the
computation of (16).

This theorem and equation (13) provide an estimate of the state vector in finite-time required
for the diagnostic of sensors and actuators.

6. APPLICATION TO NONLINEAR SYSTEMS WITH PARAMETRIC UNCERTAINTIES

Let us consider a nonlinear time-invariant system with parametric uncertainties
{

ẋ(t) = Ax(t) +B[Θu(u(t) + fa(t)) + Θxx(t) + ΘyΦy(y, t) + δ(t)],
y(t) = Cx(t) + fs(t),

(17)

where

Θu =







θ11u θ12u . . . θ1mu

...
...

. . .
...

θm1u θm2u . . . θmmu






, Θx =







θ11x θ12x . . . θ1nx
...

...
. . .

...
θm1x θm2x . . . θmnx






,

Θy =







θ11y 0 0

0
. . . 0

0 0 θmmy






, Φy(y, t) =







ϕ1y(y, t)
...

ϕmy(y, t)






,

θiju, θijx, θiiy are unknown parameters, ϕiy –, δ(t) is an external disturbance.
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Let us introduce the assumption that the external disturbance δ(t) has the form
n̄
∑

i=1
Ri sin(ωit+φi),

where Ri, ωi, and φi are the amplitudes, frequencies, and phases, respectively, and n̄ is a known
number of harmonics.

Since the observer (6) is robust with respect to input signals, the fault detection scheme for
sensors, shown in Fig. 1, retains its functionality. However, uncertainties in the control channel
prevent the application of the method for detecting actuator faults. To solve this problem, it is
necessary to estimate the unknown parameters. Let us parameterize (17).

According to Theorem 2, the proposed observer provides an estimate of the state vector in a
finite time. Substitute this estimate into (17):

˙̂x(t) = Ax̂(t) +Bū(t),

˙̄zrl(t) + F rl−1Gy
(1)
l (t) + . . .+Gy(r)(t) = A

(

z̄rl(t) + F rl−1Gyl(t) + . . . +Gy(r−1)(t)
)

+B
[

Θuu(t) + Θx(z̄rl(t) + F rl−1Gyl(t) + . . . +Gy(r−1)(t)) + ΘyΦy(y, t) + δ(t)
]

+Bf∗
a(t),

(18)

where new unknown input has the form

ū(t) = Θuu(t) + Θxx̂(t) + ΘyΦy(y, t) + δ(t) + f∗
a (t)),

f∗
a(t) = Θufa(t),

z̄rl(t) = zrl(t) + eFt ˆ̃x(0).

Assume that at the beginning of the plant’s operation, there are no actuator faults, i.e.,

Bf∗
a (t) = 0. We apply a filter of order rl,

λ
rl
r

(s+λr)
rl , where λr > 0, to equation (18) and transform it

into the form of linear regression

qr(t) = B[mT
r (t)Ξr + δ̄(t)], (19)

where

qr(t) =
λrl
r

(s+ λr)
rl
[ ˙̄zrl(t) + F rl−1Gy

(1)
l (t) + . . .+Gy(r)(t)]

−A(z̄rl(t) + F rl−1Gyl(t) + . . .+Gy(r−1)(t)),

regressor with known signals

mr(t) = [ Ur(t) Sr(t) Φr(t) ]T,

Ur(t) =
λrl
r

(s+ λr)
rl
[u(t)] ,

Sr(t) =
λrl
r

(s+ λr)
rl

[

z̄rl(t) + F rl−1Gyl(t) + . . .+Gy(r−1)(t)
]

,

Φr(t) =
λrl
r

(s+ λr)
rl
[Φy(y, t)] ,

vector of unknown parameters

Ξr =
[

Θu Θx Θy

]T
∈ R

m̄,

filtered external disturbance

δ̄(t) =
λrl
r

(s+ λr)
rl
[δ(t)] .
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For simplicity of explanation, without loss of generality, let us assume that the disturbing sig-
nal consists of a single harmonic. Furthermore, relying on the property of the sinusoidal signal
(s2[sinωt] = −ω2 sinωt), rewrite (19) in the form

s2
[

qr(t)−BmT
r (t)Ξr

]

= −ω2
[

qr(t)−BmT
r (t)Ξr

]

, (20)

where ω is a signal frequency.

To identify the unknown parameters in equation (20), only its first row is required. Multiply
both sides of equation (20) by the matrix B̄ such that B̄B = 1, and by applying a second-order

stable linear filter
λ2

δ

(s+λδ)
2 , we obtain

qδ(t) = mT
δ (t)Ξδ, (21)

where

mT
δ (t) =

[

s2λ2
δ

(s+ λδ)
2

[

mT
r (t)

]

,
λ2
δ

(s+ λδ)
2

[

−B̄qr(t)
]

,
λ2
δ

(s+ λδ)
2

[

mT
r (t)

]

]

,

Ξδ =
[

Ξr ω2 ω2Ξr

]T
,

qδ(t) =
s2λ2

δ

(s + λδ)
2

[

B̄qr(t)
]

.

It should be noted that if the signal δ̄(t) contains multiple harmonics, the system (19) can also
be transformed into the form of linear regression [23].

To estimate the unknown parameters in the linear regression equation (21), we apply the FT
DREM identification method described in (14)–(16) [19, 20]. Furthermore, the filtered external
disturbance can be easily computed as follows:

δ̄r(t) = B̄qr(t)−mT
r (t)Ξ̂r = θsin sin(ω̂t) + θcos cos(ω̂t) = mT

δ̄
(t)θδ̄, (22)

where mT
δ̄
(t) =

[

sin(ω̂t) cos(ω̂t)
]

, θδ̄ =

[

θsin
θcos

]

, θsin, θcos are amplitudes of filtered external dis-

turbance.

It is evident that equation (22) takes the form of a linear regression equation and any identifi-
cation method can be applied to estimate the amplitude of the external disturbance.

As a result, all unknown parameters of the original system have been identified, allowing for the
application of the actuator fault detection method described in (11) and (12).

Thus, the generalized algorithm for a system with parametric uncertainties can be described by
the following steps:

1. Construct the unknown input observers (5).
2. Use the unknown input observers and the method described in (7)–(10) for sensor fault detection.
3. Based on functioning without faults sensors, construct the unknown input observers and pa-

rameterize the original system in the form of (17).
4. Estimate the unknown parameters of the original plant using the method described in (18)–(22).
5. Perform diagnosis of actuator faults.

Remark 1. It should be noted that the state vector is estimated based on the outputs of the
original plant. This means that at least one output must have a reliable value. That is, it is
necessary to construct at least two unknown input observers for sensor fault detection. On the
other hand, for actuator fault detection, the proposed solution requires the construction of only
one output observer, allowing the problem to be solved even with a single input signal.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 11 2024



1090 MARGUN et al.

7. COMPUTER SIMULATION

Perform computer simulation to demonstrate the effectiveness of the proposed method. Let us
consider the following nonlinear plant with parametric uncertainties:



























































ẋ1(t) = x2(t),

ẋ2(t) = k1x1(t) + k2x2(t) + k3x3(t) + k4x3(t) + k5(u(t) + fa(t)) + k6 sin(y1),

ẋ3(t) = x4(t),

ẋ4(t) = x1(t)− 2x3(t),

y1(t) = x1(t) + υ1(t),

y2(t) = x3(t) + fs(t) + υ2(t),

y3(t) = x4(t) + υ3(t),

(23)

where k1, k2, k3, k4, k5, k6 are unknown parameters, fs(t) is the sensor fault signal, fa(t) is the actu-
ator fault signal, and υ1(t), υ2(t), υ3(t) are measurement noises with a Gaussian distribution(mean
is 0.005 and the variance is 0.005).

Rewrite (23) in the state space representation corresponding to the problem statement (17):






ẋ(t) = Ax(t) +B
[

[ θ1 θ2 θ3 θ4 ]x(t) + θ5(u(t) + fa(t)) + θ6 sin(y1)
]

,

y(t) = Cx(t) + Csfs(t) + υ(t),
(24)

where A =











0 1 0 0
−4 −3 2 0
0 0 0 1
1 0 −2 0











, B =











0
1
0
0











, C =







1 0 0 0
0 0 1 0
0 0 0 1






, Cs =







0
1
0






, u(t) = 1 + 2 sin(t),

υ(t) = [υ1(t), υ2(t), υ3(t)]
T. The equations (24) contain unknown parameters related to the plant

parameters θ1 = k1 + 4 = −1, θ2 = k2 + 3 = 3, θ3 = k3 − 2 = −3, θ4 = k4 = 1, θ5 = k5 = 2,
θ6 = k6 = −2. It should be noted that when constructing the diagnostic system, the coefficients θi
are assumed to be unknown and are determined during the estimation process.

Define the fault signals as follows. The fault signal of the second sensor fs(t) is zero until the
moment t = 5 seconds, after which it takes a non-zero value of 3+cos(t). The actuator fault occurs
at the 15th second, and its signal takes the value fa(t) = 5.

Fig. 2. Initial conditions estimation error.
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Fig. 3. Residual in the case second sensor fault.

The plant (24) has relative degrees r1(y1) = 2, r2(y2) = 4, r3(y3) = 3. Construct three observers
using the auxiliary variables (5) for x̂i(t), where i = 1, 2, 3. The matrices Li are chosen such that
the matrices F i = M i − LiCi are Hurwitz orhave eigenvalues lying on the imaginary axis, when
applying the algorithm with finite convergence time. The matrices Ci ∈ R

(l−1)×n are obtained by
removing the ith row from the matrix C.

To compare the observers with asymptotic and finite-time convergence, the first observer was
synthesized with the Hurwitz matrix F 1, while the matrices F 2 and F 3 have imaginary eigenvalues:

L1 = place
(

(M1)T, (C1)T,
[

−4 −5 −6 −7
])T

, F 1 =











0 1 0 −76
2 0 0 −150
0 0 −7 0
1 0 0 −15











,

L2 =

[

0 5 0 1
0 1 0 0

]T

, F 2 =











0 1 0 0
−5 0 0 −1
0 0 0 1
0 0 −2 0











,

L3 =

[

0 5 0 1
0 1 0 1

]T

, F 3 =











0 1 0 0
−5 0 −1 0
0 0 0 1
0 0 −3 0











.

The parameters of the estimation algorithms are defined as follows: λ0

s+λ0
= λ1

s+λ1
= . . . = λδ

s+λδ
=

5
s+5 , a0 = a1 = . . . = aδ = 0.5, ε1 = ε2 = . . . = εδ = 10−7, threshold value σ = 5.

Figures 2–5 show the results of the simulation. The transient processes of the initial condition
estimation errors are presented in Fig. 2. It is evident that these signals converge to zero. Figure 3
shows the residual signals during the fault of the second sensor. These signals converge to zero
after the initial condition estimation. When the sensor fault occurs, Js,2

f (t) continues to maintain

a zero value, while Js,1
f (t) and Js,3

f (t) deviate, indicating correct isolation of the fault in the second

sensor. Comparing the results of the observers Js,1
f (t) and Js,3

f (t), it is important to note that using
the observer with finite-time convergence allows for quicker fault detection. Based on the sensors
not affected by faults, an unknown input observer is formed for actuator diagnostics.
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Fig. 4. Unknown parameters estimation error.

Fig. 5. Residual in the case of actuator fault.

In Fig. 4 the transients of the estimation of the unknown parameters are presented. The actuator
fault estimation signal is shown in Fig. 5. This signal converges to zero as a result of parameter
identification and takes a non-zero value after 15 seconds, indicating correct fault isolation.

A threshold value σ is used for the fault detection algorithm to ensure robustness against noise.
The use of filters also helps to reduce the impact of measurement noise on the diagnostic method.
However, filtering inevitably contributes a delay in the diagnostic signals.

8. CONCLUSION

This paper presents a method for diagnosing sensors and actuators in multivariable linear
systems with arbitrary relative degree. The proposed approach is based on observers that are
invariant to the input signal. Modifications for the developed observer are proposed to ensure
predefined finite-time convergence and applicability to systems with parametric uncertainties and
multi-harmonic disturbances. Computer simulations were conducted to confirm the effectiveness
and functionality of the proposed approach. The obtained results can also be extended to the class
of non-stationary systems, where the parameters are outputs of linear generators.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 11 2024



DIAGNOSIS OF UNCERTAIN SYSTEMS 1093

FUNDING

This work was supported by the Russian Science Foundation, project no. 24-19-00454.

REFERENCES

1. Kulik, A.S., Rubanov, V.G., and Sokolov, Yu.N., Synthesis of systems that adapt to component param-
eter variations and malfunctions, Autom. Remote Control, 1978, vol. 39, no. 1, pp. 77–89.

2. Patton, R.J. and Chen, J., Observer-based fault detection and isolation: Robustness and applications,
Control Engineering Practice, 1997, vol. 5, no. 5, pp. 671–682.

3. Isermann, R., Supervision, fault-detection and fault-diagnosis methods, An introduction, Control Engi-
neering Practice, 1997, vol. 5, no. 5, pp. 639–652.

4. Zhirabok, A., Zuev, A., Seriyenko, O., and Shumsky, A., Fault identificaition in nonlinear dynamic
systems and their sensors based on sliding mode observers, Autom. Remote Control, 2022, vol. 83, no. 2,
pp. 214–236.

5. Hou, M. and Muller, P.C., Design of Observers for Linear Systems with Unknown Inputs, IEEE. Trans.
Autom. Control, 1992, vol. 36, no. 6, pp. 871–875.

6. Warrad, B. and Boubaker, O., Design of Unknown Input Observers for Linear Systems with State and
Input Delays, 15th International Multi-Conference on Systems, Signals & Devices (SSD), 2018, pp. 1–5.

7. Bui, V.H., Margun, A.A., and Bobtsov, A.A., Synthesis of an observer of state variables and sinu-
soidal disturbance for a linear nonstationary system with unknown parameters, Journal of Instrument
Engineering, 2024, vol. 67, no. 3, pp. 209–219.

8. Bui, V.H., Margun, A.A., and Bobtsov, A.A., Synthesis of an Observer Providing a Finite-Time State
Estimation Based on the Output, Mekhatronika, Avtomatizatsiya, Upravlenie, 2024, vol. 25, no. 2,
pp. 65–71.

9. Chen, W. and Saif, M., Fault detection and isolation based on novel unknown input observer design,
2006 American Control Conference, 2006, p. 6.

10. Duan, G.-R. and Patton, R.J., Robust fault detection using Luenberger-type unknown input observers –
a parametric approach, Int. J. Syst. Sci., 2001, vol. 32, no. 4, pp. 533–540.

11. Xu, F., Tan, J., Wang, X., Puig, V., Liang, B., and Yuan, B., A novel design of unknown input
observers using set-theoretic methods for robust fault detection, 2016 American Control Conference,
2006, pp. 5957–5961.

12. Zarei, J. and Poshtan, J., Design of Nonlinear Unknown Input Observer for Process Fault Detection,
Indust. Engineer. Chemisr. Res., 2010, vol. 49, no. 22, pp. 11443–11452.

13. Duan, G.R., Howe, D., and Patton R.J., Robust fault detection in descriptor linear systems via gener-
alized unknown input observers, Int. J. Syst. Sci., 2002, vol. 33, no. 5, pp. 369–377.

14. Zhou, M., Wang, Z., and Shen, Y., Fault Detection and Isolation Method Based on H,H∞ Unknown
Input Observer Design in Finite Frequency Domain, Asian J. Control, 2017, vol. 19, pp. 1777–1790.

15. Bui, V.H., Margun, A.A., and Kremlev, A.S., Detection and isolation of sensor faults under external dis-
turbances, 8th International Conference on Control, Decision, and Information Technologies (CoDIT),
2022, pp. 1255–1260.

16. Ichalal, D. and Mammar, S., On Unknown Input Observers for LPV Systems, IEEE Transact. Indust.
Electron., 2015, vol. 69, no. 9, pp. 5870–5880.

17. Floquet, T., Edwards, C., and Spurgeon, S.K., On sliding mode observers for systems with unknown
inputs, Int. J. Adaptiv. Control Signal Proc., 2007, vol. 21, no. 8, pp. 638–656.

18. Wang, X., Tan, C., Liu, L., and Qi, Q., A novel unknown input interval observer for systems not
satisfying relative degree condition, Int. J. Robust Nonlin., 2021, vol. 31, no. 10, pp. 2762–2782.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 11 2024



1094 MARGUN et al.

19. Coutinho, P., Bessa, I., Xie, W., Nguyen, A., and Palhares, R., A sufficient condition to design unknown
input observers for nonlinear systems with arbitrary relative degree, Int. J. Robust Nonlin., 2022, vol. 52,
no. 15, pp. 8331–8348.

20. Margun, A.A., Bui, V.H., Bobtsov, A.A., and Efimov, D.V., State estimation for a class of nonlinear
time-varying uncertain system under multiharmonic disturbance, arXiv, 2024, 2407.18987.

21. Ortega, R., Aranovskiy, S., Pyrkin, A., Astolfi, A., and Bobtsov, A., New results on parameter estimation
via dynamic regressor extension and mixing: Continuous and discrete-time cases, IEEE Trans. Autom.
Control, 2020, vol. 66, no. 5, pp. 2265–2272.

22. Korotina, M., Aranovskiy, S., Ushirobira, R., Efimov, D., and Wang, J., A Note on Fixed- and Discrete-
Time Estimation via the DREM Method, IEEE Trans. Autom. Control, 2024, vol. 69, no. 7, pp. 4793–
4797.

23. Khac, T.N., Vlasov, S., and Pyrkin, A., Parameters estimation of multi-sinusoidal signal in finite-time,
Cybernet. Phys., 2022, vol. 11, no. 2, pp. 74–81.

This paper was recommended for publication by P.V. Pakshin, a member of the Editorial Board

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 11 2024


